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Dispersion and Asymmetry Effects of ADI-FDTD
Michael Darms, Rolf Schuhmann, Holger Spachmann, and Thomas Weiland

Abstract—In this paper, a generalized derivation of the alter-
nating direction implicit finite-difference time-domain algorithm
based on operator splitting is proposed. The formulation follows
the notation of the finite integration technique. A straightforward
proof of stability is given and the numerical dispersion formula is
presented and verified by numerical experiments. As an additional
parasitic effect, theasymmetric behaviorof the algorithm even for
exactly symmetric setups is revealed. Both the dispersion error and
the asymmetry error are discussed in terms of the applicability of
ADI for low-frequency problems.

Index Terms—alternating direction implicit (ADI), finite-differ-
ence time-domain (FDTD), finite integration technique (FIT), sta-
bility.

I. INTRODUCTION

I N RECENT publications [1], [2] the alternating direction
implicit (ADI) has been adapted to the finite-difference time-

domain (FDTD) approach [3] for electromagnetic problems.
Compared to the conventional leapfrog algorithm, the ADI tem-
poral integration method offers the great advantage of being
unconditionally stable, accompanied only by a small computa-
tional overhead.

So far, the accuracy of the algorithm has been analyzed by the
numerical dispersion relation given in [4], [5]. Taking only the
numerical dispersion into account, the ADI-FDTD algorithm
should be a good choice for many problems, which can not
be addressed by the conventional FDTD algorithm. However,
numerical experiments [6], [7] demonstrate that there must be
other sources of significant numerical errors, which limit the ap-
plicability of the ADI-FDTD method.

II. ADI-FDTD B ASED ON OPERATORSPLITTING

A. Generalized ADI Formulation

In the following generalized description of the ADI algo-
rithm, the matrix–vector notation of the finite integration tech-
nique (FIT [8]) is used. Applied to Cartesian grids and to time
domain using the leapfrog scheme, FIT supplies computation-
ally equivalent update formulas as the FDTD method [9].

The starting points are the discrete forms of Faraday’s and
Ampere’s law (the first and second so-calledMaxwell’s Grid
Equations)
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with the state vectors and (electric and magnetic grid volt-
ages), the curl-matrices and for the primary and the
dual grid, and the material operators and (diagonal
matrices for Cartesian grids).

Based on the idea of operator splitting, the curl operator can
be arbitrarily separated in and

with and . After replacing the time
derivatives by central differences one can define two half steps
of a generalized ADI-type update scheme, thefirst procedure

(2)

and thesecond procedure

(3)

Both update equations can be symmetrized using the transfor-

mations and .

B. Stability

The resulting (symmetrized) system matrix for a full time step
is a so calledPeaceman–Rachfordmatrix and can be written as

(4)

with and the anti-symmetric matrices

(5)

The matrix is similar to the matrix
. Using the general relation

, it can be shown [6] that is a unitary matrix
( ). Hence, the magnitude of all eigenvalues of
and is equal to onefor arbitrary time steps , which
guarantees unconditional stability.

It is important to note that this proof does not depend on the
special separation scheme of the curl operator. Thus, (2) and (3)
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are a generalization of the ADI-FDTD algorithm described in
[1], [2] and lead to a family of unconditionally stable algorithms.

C. Splitting of the Curl Operator

The updated equations of the first and second procedure can
be carried out by first solving an implicit equation for the elec-

tric voltages , followed by an explicit update step for. The
resulting implicit equation reads

(6)

The curl operators and consist of two-banded sub-ma-
trices (or , respectively), de-
scribing the differencing scheme in each of the coordinate di-
rections. Thus, the special choice

(7)

with

(8)

results in a tridiagonal system matrix, which can be efficiently
inverted. This splitting approach also leads back to the original
ADI-FDTD algorithm.

III. PROPERTIES OF THESOLUTION

A. Numerical Dispersion

Using a similar approach as described in [4],1 the numerical
dispersion of the algorithm has been found [6]. Starting from the
first procedure (2) and considering planar waves [

with ], the eigenvalue-problem

(9)
can be identified, leading to

(10)

with , ( ),
, and . This is equivalent

to the formula presented in [4], if
.

1Note that the temporal shift operator� in [4] corresponds to a full time step
shift of the field values while� performs only a half time step shift of the
electric field.

Fig. 1. Resonance frequencies of an empty cavity simulated with the
ADI-FDTD algorithm for certain(n; m; k)-modes in dependence of the
relative Courant number�t=�t . The Shannon limit indicates the highest
resolvable frequency by the chosen time-step.

Fig. 2. Left figure shows the relative frequency error of plane waves in
dependency of their incident angle in ADI-FDTD (spatial and temporal
sampling ratesn = 10 andm =

p
3n). The right figure demonstrates the

relative frequency error along the axis of the grid in dependence of the spatial
and temporal sampling ratesn = �=� andm = T=�t.

To validate this dispersion relation, the resonance frequen-
cies of several -eigenmodes in a rectangular cavity
(dimensions 1 m 1 m 0.5 m) are calculated by the ADI-al-
gorithm followed by a fast fourier transformation (FFT), and
compared to the eigensolutions predicted by (10). The spatial
step size is fixed and equidistant ( m),
and the time step is varied within a large range, exceeding
the stability range of the FDTD method (Courant-limit ).

The results of the simulations are shown in Fig. 1. For large
the resonance frequencies of the “two-dimensional” modes

(with ) reach the Nyquist Limit . This
is also predicted by (10) as tends to infinity. . In the fol-
lowing, the dispersion relation is used to investigate the propa-
gation of a plane wave with and ,

, in the grid using the
ADI-FDTD scheme. The spatial and temporal sampling rates
are expressed by (equidistant grid)
and . Fig. 2 (left) shows the dependency of the
relative frequency error for and
(Courant limit) and varying incident anglesand . It is evident
that the maximum error arises with a propagation along the axes.
Varying and does not change the characteristics of the plot.
Fig. 2 (right) shows the frequency error of a wave propagation
along the axes in dependency of the sampling ratesand . A
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Fig. 3. Time dependency (full and half time steps) of simulatedh and h
component in the small cavity model with�t = 2�t . Alternatively, one of the
components coincides with the theoretical curve, as predicted by the dispersion
relation (10).

stronger impact of the error due to temporal discretization com-
pared to the spatial can be observed. Results with only moderate
frequency errors are obtained, if both the spatial and temporal
sampling are sufficiently high ( ).

B. Symmetry

In the next section, another type of error arising in the ADI
is investigated, the symmetry of its field solutions in terms of
the different spatial directions in the grid. As the smallest pos-
sible numerical example, the cavity in Fig. 3 is considered. It
is discretized with only four cells, PEC boundaries in all di-
rections, and thus only one nonzero electric and four nonzero
magnetic components (2-D TM-case).The spatial step size is

, and the algorithm is initialized at

with the initial conditions ,
. From the symmetry of the setup, also a symmetric

solution, with all having the same magnitude at each time
step is expected. However, substituting the initial conditions
into (2) and (3) and calculating two half steps of ADI-FDTD
yields

(11)

Thus, there is an “asymmetry error” of the solution after one
step, which grows with the Courant number squared.
This effect can be explained from the operator splitting formulas
(7), which introduce an artificial (nonphysical) asymmetry be-
tween the curl-operators on the grid and the dual grid. An even
more surprising result can be observed, if several time steps are
carried out and the time dependence of the magnetic voltage
components is plotted using bothhalf and full time step infor-
mation. The resulting curves in Fig. 3 demonstrate that, alterna-

tively, the component of one of the spatial directions ( and

) coincides with the theoretical curve as predicted by the
dispersion relation (10), whereas the other component is equal
to the linear average of its neighboring values. There are several
consequences of this peculiar behavior of the ADI algorithm:

Obviously, all simulated field patterns will exhibit a parasitic
asymmetry even for exactly symmetric setups. On the other side;
however, this asymmetry will produce an only small effect, as
long as the temporal sampling rate is sufficiently high. Thus, the
poor results for low-frequency simulations with ADI cannot be
fully explained by this result.

IV. CONCLUSION

A generalized derivation of the FDTD-ADI algorithm based
on operator splitting with a compact proof of unconditional
stability is proposed. The numerical dispersion relation is
presented and numerically verified.

At first sight, the ADI algorithm seems to be well suited also
for the low-frequency regime. However, numerical experiments
show that inaccurate or even qualitatively wrong results are ob-
tained, if the Courant-limit is considerably exceeded. As the
evaluation of the numerical dispersion relation in this paper re-
veals, this behavior cannot be explained by the dispersion error
for plane waves, since such waves are usually very well sam-
pled in both time and space for low-frequency applications. The
asymmetry error of the ADI method is also not responsible for
the poor accuracy in such low-frequency cases, as it can be con-
sidered to be a small effect for well sampled waves.

In conclusion, it is evident that the investigation of plane
waves is not sufficient to explain the low-frequency behavior of
complex discretization approaches such as ADI. Indeed, further
investigations have demonstrated that some important proper-
ties of theeigenvectorsof the iteration matrix, including both
static and dynamic solutions are hurt by the ADI method. These
results and their impacts on the accuracy of the algorithm will
be subject of a subsequent paper.
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