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Dispersion and Asymmetry Effects of ADI-FDTD

Michael Darms, Rolf Schuhmann, Holger Spachmann, and Thomas Weiland

Abstract—in this paper, a generalized derivation of the alter- ith the state vectore andh (electric and magnetic grid volt-
nating direction implicit finite-difference time-domain algorithm ages), the curl-matriced andC = CT for the primary and the

based on operator splitting is proposed. The formulation follows . . .
the notation of the finite integration technique. A straightforward ~ du@l 9rid, and the material operatavk. -: andM,,- (diagonal

proof of stability is given and the numerical dispersion formulais Matrices for Cartesian grids).

presented and verified by numerical experiments. As an additional ~ Based on the idea of operator splitting, the curl operator can
parasitic effect, theasymmetric behavioof the algorithm even for pe arbitrarily separated i€ = C; + C, andC = Cl +
exactly symmetric setups is revealed. Both the dispersion error and (32 with C1 _ CIT and Cg _ C%“. After replacing the time

the asymmetry error are discussed in terms of the applicability of derivatives by central differences one can define two half steps

ADI for low-frequency problems. ;
) S o of a generalized ADI-type update scheme, fils procedure
Index Terms—alternating direction implicit (ADI), finite-differ-

ence time-domain (FDTD), finite integration technique (FIT), sta- At ~
bility. I Y M.-:1Cy ( antl/2 )
=5V e 1 i
I. INTRODUCTION 2
At -
N RECENT publications [1], [2] the alternating direction I 9 M. Cy en
implicit (ADI) has been adapted to the finite-difference time- = At hr )

domain (FDTD) approach [3] for electromagnetic problems. ) M,-:Cy I
Compared to the conventional leapfrog algorithm, the ADI tem-
poral integration method offers the great advantage of beifgd thesecond procedure
unconditionally stable, accompanied only by a small comput At -
tional overhead. I —— MGy entl

So far, the accuracy of the algorithm has been analyzed by thea ¢ Bt
numerical dispersion relation given in [4], [5]. Taking only the\ =~ M,-Cy I
numerical dispersion into account, the ADI-FDTD algorithm At .
should be a good choice for many problems, which can not I 71\/[5—102 entl/2
be addressed by the conventional FDTD algorithm. However, = At (fln+1/2> 3
numerical experiments [6], [7] demonstrate that there must be -—M,.C; I
other sources of significant numerical errors, which limit the ap- 2
plicability of the ADI-FDTD method. Both update equations can be symmetrized using the transfor-

mationse’ = M'/*e andh’ = M;ffﬁ.
[I. ADI-FDTD B ASED ON OPERATORSPLITTING -
B. Stability
The resulting (symmetrized) system matrix for a full time step

In the following generalized description of the ADI algosg 5 g calledPeaceman—Rachfortatrix and can be written as
rithm, the matrix—vector notation of the finite integration tech-

nique (FIT [8]) is used. Applied to Cartesian grids and to time G = (I - TYI)_l (I+7rY2)(I- rY2)_1 (I+7Y1) (4)
domain using the leapfrog scheme, FIT supplies computation-
ally equivalent update formulas as the FDTD method [9].  With = At/2 and the anti-symmetric matrices

The starting points are the discrete forms of Faraday’s and

A. Generalized ADI Formulation

) i 1/2 ~ 1/2
Ampere’s law (the first and second so-calleidxwell’s Grid v _ 0 M. CnM,rl )
Equation3 " —Mll/f1 CnMifZ1 0
% h = -M,-:Ce, % e =M.-.Ch 1) The matrixG is similar to the matrbG’ = (I-rY;)G(I -

rY1) ! Using the general relatioll — A)(I+ A) 1 = (I+
. . . . , A)~YI — A), it can be shown [6] thaG’ is a unitary matrix
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are a generalization of the ADI-FDTD algorithm described in
[1], [2] and lead to a family of unconditionally stable algorithms.  4o4e+s

—— Shannon
. ~0--(2,1,1)
C. Splitting of the Curl Operator ~(220)
] ) 3,04E+08 %+ (1,1,1)
The updated equations of the first and second procedure c¢ & +g:g;

be carried out by first solving an implicit equation for the elec- =

. . . — 2,04E+08
tric voltagese, followed by an explicit update step far. The
resulting implicit equation reads

1,04E+08

(I + 7"2ME—1 CZ/lM;L—l 02/1) e

O N 4,00E+06 T
= ’]“ME—IC h+(I—T2ME—102/1M”—101/2> EOId. (6) 0 3 ¢ 50 s
~ . Fig. 1. Resonance frequencies of an empty cavity simulated with the
The curl operator€” and C consist of two-banded sub-ma-ap-FDTD algorithm for certain(n, m, k)-modes in dependence of the
tricesP,, P,, P_ (or P,y = —Pf/y/z, respectively), de- relative Courant numbent/At.. The Shannon limit indicates the highest

scribing the differencing scheme in each of the coordinate (fs°vable frequency by the chosen time-step.
rections. Thus, the special choice

0 -P. 0 0o 0 P, " i
Ci= 0 0 -P,|, Cyo=[(P. O 0 04 g
-P, 0 0 0 P, O ey I 01119 s
(7) o . . ) g 20 Courant Stabili
with n . ,{//- el -
'\0 * S vﬂ) : 4 o
PIP. 0 0 "%q‘\g{\ (s 1 =
C [ 3 3 ° 10 20 30 4
0202 - 0 PZPI 0 (8) 0 ¢ %0 180 m (temporal sampling rate)
0 o PITP,

. - . . - jg. 2. Left figure shows the relative frequency error of plane waves in
results in a trldlagonal system matrix, which can be efficient ependency of their incident angle in ADI-FDTD (spatial and temporal

inverted. This splitting approach also leads back to the originaimpling ratess = 10 andm = /3 n). The right figure demonstrates the
ADI-FDTD algorithm. relative frequency error along the axis of the grid in dependence of the spatial
and temporal sampling rates= A/A andm = T'/At.

Ill. PROPERTIES OF THESOLUTION
To validate this dispersion relation, the resonance frequen-
cies of severa(n, m, k)-eigenmodes in a rectangular cavity
Using a similar approach as described in{4he numerical (dimensions 1 mx 1 m x 0.5 m) are calculated by the ADI-al-
dispersion of the algorithm has been found [6]. Starting from thgyrithm followed by a fast fourier transformation (FFT), and

A. Numerical Dispersion

first procedure (2) and considering planar wavesTt'/* = compared to the eigensolutions predicted by (10). The spatial

§ e with ¢ = ££], the eigenvalue-problem step size is fixed and equidistami¢ = Ay = Az = 1/16 m),

f_1N? and the time step\t is varied within a large range, exceeding
~ ~ ~ S~ ~ the stability range of the FDTD method (Courant-limit,.).

M (Ci+ éCQ)iVI"_l(Cl +ECy) e =~ <F/2> = The results of the simulations are shown in Fig. 1. For large
Al At the resonance frequencies of the “two-dimensional” modes

(9) (with & = 0) reach the Nyquist Limitf,.,. = 1/(2At). This

can be identified, leading to is also predicted by (10) aAt tends to infinity. . In the fol-
lowing, the dispersion relation is used to investigate the propa-

tan®(¢) = gation of a plane wave witlh = kc andk, = k cos(6) cos(¢),

Kry, + Kry, + Kr, + KQTmry + K2ryrz + K?r,r,
1+ K3r,ryr,

ky, = kcos(f)sin(¢), k. = ksin(f) in the grid using the
ADI-FDTD scheme. The spatial and temporal sampling rates
are expressed bixz = Ay = Az = 27 /nk (equidistant grid)
with 7, = (sin(kaAa/2)/(Aa/2))?, (@ = =z,y,2), andAt= 27/(mw).Fig. 2 (left) shows the dependency of the
¢ = w(At/2), and K = (At/2)?/ue. This is equivalent relative frequency error—w ,pr/w forn = 10 andm = v3n
to the formula presented in [4], if(r, + Kr, + Kr.+ (Courantlimit) and varying incident anglésndg. It is evident
K?ryry + K?ryro+ K?rory < 14 KPrpryr.. that the maximum error arises with a propagation along the axes.
INote that the temporal shift operatarin [4] corresponds to a full time step Varyingn andm does not change the characteristics of the plOt.

shift of the field values while\{*) performs only a half time step shift of the Fig. 2 (right) ShPWS the frequency error of a wave propagation
electric field. along the axes in dependency of the sampling ratasdm. A

(10)
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Obviously, all simulated field patterns will exhibit a parasitic
asymmetry even for exactly symmetric setups. On the other side;
however, this asymmetry will produce an only small effect, as

——Disp. Relation
| 4+ —h,

05 long as the temporal sampling rate is sufficiently high. Thus, the
2 04 poor results for low-frequency simulations with ADI cannot be
§ fully explained by this result.
T 05

IV. CONCLUSION

o ,}[S] A A generalized derivation of the FDTD-ADI algorithm based
on operator splitting with a compact proof of unconditional
Fig. 3. Time dependency (full and half time steps) of simulabedand b 5 stability is proposed. The numerical dispersion relation is

component in the small cavity model witkt = 2At, . Alternatively, one ofthe Presented and numerically verified.
components coincides with the theoretical curve, as predicted by the dispersiomt first sight, the ADI algorithm seems to be well suited also

relation (10). for the low-frequency regime. However, numerical experiments
show that inaccurate or even qualitatively wrong results are ob-
stronger impact of the error due to temporal discretization COMined, if the Courant-limit is considerably exceeded. As the
pared to the spatial can be observed. Results with only modergiguation of the numerical dispersion relation in this paper re-
frequency errors are obtained, if both the spatial and tempogglys, this behavior cannot be explained by the dispersion error
sampling are sufficiently highn( m > 30). for plane waves, since such waves are usually very well sam-
pled in both time and space for low-frequency applications. The
asymmetry error of the ADI method is also not responsible for
In the next section, another type of error arising in the AQthe poor accuracy in such low-frequency cases, as it can be con-
is investigated, the symmetry of its field solutions in terms afidered to be a small effect for well sampled waves.
the different spatial directions in the grid. As the smallest pos-In conclusion, it is evident that the investigation of plane
sible numerical example, the cavity in Fig. 3 is considered. Waves is not sufficient to explain the low-frequency behavior of
is discretized with only four cells, PEC boundaries in all dicomplex discretization approaches such as ADI. Indeed, further
rections, and thus only one nonzero electric and four nonzéreestigations have demonstrated that some important proper-
magnetic components (2-D TM-case).The spatial step sizetiiss of theeigenvectorsf the iteration matrix, including both
Az = Ay = Az = A, and the algorithm is initialized @t= 0  static and dynamic solutions are hurt by the ADI method. These
with the initial conditionsh ¥ = 1 = 1Y = (Y =0, results and their impacts on the accuracy of the algorithm will
¢{"” = 1. From the symmetry of the setup, also a symmetrfe subject of a subsequent paper.
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